DOE Bioenergy Technologies Office (BETO) 2023 Project Peer Review

Intensified Biogas Conversion to Value-added Fuels and Chemicals WBS: 2.3.1.414

Friday, April 7, 2023

Catalytic Upgrading Session

PI: John N. Kuhn (USF)

co-Pls: Babu Joseph (USF) and Matt Yung (NREL)

This presentation does not contain any proprietary, confidential, or otherwise restricted information

GOAL STATEMENT

Goal: Convert biogas obtained from landfills or anaerobic digesters (AD) into liquid hydrocarbon fuels (BGTL, biogas-to-liquids)

• Develop an intensified process to reduce CAPEX and enable a 15% reduction in MFSP (minimum fuel selling price) relative to SOT

Outcome: A BGTL technology, demonstrated on industrial process gas, to convert biogas from distributed facilities (e.g., landfills, agricultural AD units, wastewater treatment plants) into cost-competitive fuels and to reduce fossil GHG emissions.

Relevance:

Drawbacks from current technology pathways:

- High CAPEX and complex process not suitable for distributed, small-scale productions
- Methane flaring or combustion for heat/power is a low value product

Advance biogas utilization technology by focusing on:

- Intensified process (catalyst and process)
- Mild operating conditions (moderate T, low P)
- High value product (high jet/diesel selectivity)
- **High carbon efficiency** to product
- Demonstration with industry partner, process gas

0. Overview

- 1. Approach
- 2. Progress and Outcomes
- 3. Impact

0. Overview

0. PROJECT OVERVIEW (1 of 3)

Overarching Goal:

Upgrade biogas to valueadded fuels and chemicals

Biogas (~500 BTU/SCF)

Potential:

Diversify to value-added products, circular economy, minimize flaring

Competing options to mitigate environmental impact of biogas/landfill gas:

Retail prices* (\$/GGE)

n/a

\$1.54 (~3 cents/kWh; retail to grid)

\$2.88 (CNG) 3.63 (LNG) \$5.17 (diesel) 3.55 (propane)

0. Project Overview (2 of 3)

Flue Gas

Natural

Gas

Reformer

Biogas

H₂O/O₂¹

Conventional process:

- 3 reactors
- >20% methane loss in reformer
- High pressure

TriFTS^{TM*}:

- WGS removed via catalyst and process tuning
- Compressor and heat-exchanger are major costs

Intensified BGTL:

- Tune to small scale
- Mass and heat integration

Conventional BGTL

WGS

Reactor

FTS

Reactor

Waste

Heat

Fuel Gas

₩Water

Separations

HC Products

Heavy Wax

0. PROJECT OVERVIEW (3 of 3)

- 0. Overview
- 1.Approach
- 2. Progress and Outcomes
- 3. Impact

1. Approach

1. Approach (1 of 6)

Convert biogas to valued added chemicals and fuels and avoid carbon loss to undesirable products.

AD at dairy farm

Challenges – Methane conversion, C2+ selectivity, catalyst stability, economies of scale

1. APPROACH (2 OF 6)

Tailor catalysts with varying functionality under similar conditions:

- (1) Catalytic activity (methane activation and C-C bond forming)
- (2) In-situ separation

Important for upgrading to value-added chemical production

1. Approach (3 of 6)

Bed Configurations

Multiple process options to integrate components into a single catalyst bed:

- **Develop** reactor models for the <u>reforming</u> and <u>FTS</u> using composite catalysts and examine variability
- Combine in single reactor to <u>optimize</u>
 the intensified reactor in terms of
 <u>bed packing and shell thickness</u>

1. Approach (4 of 6)

Task Structure

Task 1: Project Verification

Lead: U. of South Florida

Task 2: Catalyst Synthesis, Validation and Reaction Testing

Lead: U. of South Florida

Task 3: Advanced Materials Characterization and Design

Lead: NREL

Task 4: Commercialization Readiness

Lead: U. of South Florida with Industry Partners

Task 5: Technoeconomic and Lifecycle Analysis (TEA/LCA)

Lead: NREL

Task 6: Project Management

Lead: USF

Project Overview:

 Develop intensified catalytic process for biogas-to-fuels and demonstrate technology on industrial biogas.

The project management plan allows each organization to focus on its core capabilities to enable rapid catalyst and process development.

1. Approach (5 of 6)

Go/No-Go – Focused on critical success factor – C2+ hydrocarbons :

"Demonstrate ≥10% yield of C2+ hydrocarbons on lab-scale..." in 2021

*(Already achieved 16% hydrocarbon yield on lab-scale with real biogas, up from 3%)

Activities focus on critical success factors by addressing the Go/No-Go criteria and reducing project risks.

Project Communication–

Weekly meetings; quarterly DOE meetings; ongoing industrial input;

Interdisciplinary Team Members

Expertise in reaction
 engineering, characterization,
 synthesis, TEA/LCA, scale-up, and
 industrial biogas production

Data Management – Secure data folders for all project files

Leverage DOE Investments— Collaborate and leverage core competencies of NREL and BETO's ChemCatBio consortia for catalyst characterization (ACSC), and TEA/LCA, as well as other DOE facilities and expertise

Integrated Approach

Development is accelerated by an iterative, multifaceted approach to R&D challenges

1. Approach (6 of 6)

Site visit to Citrus County landfill to procure biogas for testing.

Grabbing the "bull by the horns" during kick-off meeting in Tampa.

Project Risks and Mitigation Strategies

Carbon Efficiency

Concerted effort towards catalyst/process improvement to reduce uncertainty in yields to enable cost goals

- Catalyst selection for yield improvements
- Catalyst cost considerations (eliminate PMG metals and rare elements/precursors)
- Modeling predictions to justify experimental changes

Process Economics

Establish performance targets and develop sensitivity analysis to identify largest cost reduction parameters

Underlines and bullets indicate mitigation occurrences

Equipment failure and staffing disruption

Key capabilities and operations (e.g., reactor, analytical, characterization, <u>industrial supply</u>) have redundant capabilities to mitigate disruption to project progress

Contaminants Effects with Real Process Gas

Experience with gas clean-up (siloxanes, H₂S, NH₃) and working with real process gas reduces risk of unknown contaminant impacts (halides)

Biogas compression and filling unit (BRC FuelMaker).

- 0. Overview
- 1. Approach
- 2.Progress and Outcomes
- 3. Impact

2. Progress andOutcomes

2. Progress and Outcomes: (1 of 14)

Low temperature CH₄ reforming

Challenge:

- Traditional CH₄ reforming requires high temp. on Ni catalyst for C-H activation
- High temp. not suitable for FTS

Progress:

- Increased activity (lowered C-H activation temp.) with Ni-Pt alloy
- Modified synthesis to improve dispersion, reduce Pt loading and cost, and increase activity
- New formulations (Ru, Zn) to eliminate
 Pt and further reduce catalyst cost
 (40% reduction, ~\$12/kg)
- Durability testing for 100+ hours shows stable, robust process with minimal coke (high carbon efficiency)

Improved reforming catalyst and reduced cost.

- Catalyst cost reduced by 40%
- Low temp. (450°C) activity increased significantly

Activity:

 Tuned via synthesis and enhance activity and reduce cost

Selectivity:

 H₂: CO ratio tuned ~ 2 for optimal Fischer-Tropsch synthesis by feeding steam

Stability:

- No CO_2 formed during TPO after ~ 100+ hr TOS (T = 450 °C)
- Coking rate < 4.4E-6 g-C/g-cat/h

2. Progress and Outcomes (2 of 14)

Catalyst advances:

- Ni-Zn intermetallic compounds show high performance and stability for methane activation
- Dry reforming used as a harsh model reaction
- Results suggest Zn allows control of Ni reactivity at the surface
- Coking rate lowered by ~ 4 orders of magnitude compared to a Zn-free supported Ni catalysts

2. Progress and Outcomes (3 of 14)

2. Progress and Outcomes (3 of 14)

2. Progress and Outcomes (4 of 14)

2. Progress and Outcomes (5 of 14)

2. PROGRESS AND OUTCOMES (6 of 14)

High temperature C-C coupling: FTS

Selectivity study as a function of Fe:In loading

CO conversion was kept at ~10%

Challenge:

- Fischer-Tropsch synthesis (FTS) at high temp. limits molecule size (chain length)
- Stability can be challenging at high temperature (>400°C)

Progress:

- Iterative reaction testing and characterization improved Fischer-Tropsch catalyst
- Indium promoting ↑Fe dispersion, and limits undesired CH₄ and CO₂ formation; optimal dopant ratio of 10:1 Fe:In of test matrix

Metal dispersion increases with increasing In (indium) content

2. Progress and Outcomes (7 of 14)

XPS over the post-reaction catalysts

XPS analysis:

- suggested Fe-In interaction
- more In present near the surface layers when In loading increased

Progress:

- Indium increases surface reactant (CH_x)
 residence time by 3-fold (↓ methane formation
 and ↑ selectivity for C-C coupled products)
- Mechanistic insight
 - Isotopic studies in methanation regime and characterization (e.g., XPS, TPR) revealed insight to effect of indium promotion
 - Fe₁₀In/Al₂O₃ has stronger surface intermediates than Fe/Al₂O₃

TPR

In promotes reducibility (TPR)

Isotopic Exchange Experiments Surface residence time of CHx:

Fe/Al₂O₃: 7.0 s Fe₁₀In/Al₂O₃: 20.1 s

2. Progress and Outcomes (8 of 14)

Challenge:

- Fischer-Tropsch synthesis (FTS) at high temp.
 limits molecule size (chain length)
- Stability can be challenging at high temperature (>400°C)

Progress:

- Synthesized high stability Fe₁₀In/Al₂O₃ catalyst
- Demonstrated >70 hours of stable Fischer-Tropsch activity
- High olefin selectivity allows facile m.w. tunings via oligomerization (demonstrated with Ni/SiO₂-Al₂O₃)
- Lower CO₂ production and benign reaction conditions (lower T, P) compared to literature/SOT

Partners have history of successful labto-pilot demonstration.

Industrial partners T2C
Energy and Citrus County
Landfill photographed with
skid pilot plant for
producing 75 gal/day of
fuel from landfill gas using
two-reactor (reforming +
FT) process and resulting
diesel product

2. Progress and Outcomes (9 of 14)

High temperature C-C coupling

Catalyst	X _{CO} (%)	S _{CO2} (%)	HC Distribution			O/P	α
			S _{CH4} (%)	S _{C2-C4} (%)	S _{C5+} (%)		
Fe/SiO ₂	11	21	48	50	2	1.8	0.48
Fe ₂₀ K/SiO ₂	64	27	54	42	4	1.2	0.50
Fe ₁₀ K/SiO ₂	73	25	56	41	3	1.2	0.49
Fe ₅ K/SiO ₂	74	28	47	47	6	1.3	0.53
Fe ₅ K ₂ /SiO ₂	72	30	39	50	11	2.3	0.56
" (T=350 °C)	50	30	29	51	20	5.9	0.57
" (T=300 °C)	24	31	25	54	21	9.1	0.57
" (H ₂ :CO = 1.5)	89	28	24	52	24	3.8	0.63

Progress:

- Selectivity and stability were acceptable for Fe-In catalysts, but activity was low
- Revisited literature and experimental screening to identify Fe-K among others
- K improved both CO conversion and C5+ selectivity

2. Progress and Outcomes (11 of 14)

Simulation predictions – Analysis of Feed Composition

Concentration of carbon monoxide, bulk and pellet scale

Stacked bed reactor modeling (*left*) Steam enhances conversion but deters hydrocarbon formation (*right*) CH₄:CO₂ ratio in biogas impacts performance. Real biogas samples ~ 1.4

CH4: CO2 Ratio - Impact on Product

2. Progress and Outcomes (10 of 14)

Combined bed testing – model biogas

Precious metal free reforming catalyst + Fe-K based Fischer-Tropsch catalyst

Progress:

- Successful demonstration of intensified process
- Conditions tuned to enhance C2+ and C5+ products
- High olefin selectivity allows for oligomerization to tune product molecular weight

- Sequential catalyst beds in same reactor
- Temperature, pressure, and catalyst tuned products/rates
- Studies with minimizing inerts
- Recent focus on pellet catalysts

Values represent on-line gas-phase products only

^{*}Precise catalyst compositions and reaction conditions confidential for IP/patent protections.

2. PROGRESS AND OUTCOMES (11 of 14)

^{*}Precise catalyst compositions and reaction conditions confidential for IP/patent protections.

2. Progress and Outcomes (12 of 14)

^{*}Precise catalyst compositions and reaction conditions confidential for IP/patent protections.

2. Progress and Outcomes (13 of 14)

Simulation predictions – Bed Design

Current status

Prediction of bed performance for stacked bed configurations

To do:

- Refine model with new data
- Add in energy balance
- Refine enhancements with layered catalysts

Bed Configurations

2. PROGRESS AND OUTCOMES (14 of 14)

Environmental and Economic Assessment (TEA/LCA)

Challenge:

- Cost-competitive technology is needed to attract industrial interest
- Environmental benefits must be shown for "green premium," RINs, etc.

Progress:

- **CAP-EX** and **OP-EX** are lower than comparable techniques at this scale
- Yield of C5+ is a key parameter to lower the MFSP (Recycle currently under investigation)
- Co-products (i.e., LPG) is under study to aid in lowering MSFP
- Utilization of landfill gas results in net-negative greenhouse gas emissions (GHGs) and negative fossil energy consumption (FEC)

- 0. Overview
- 1. Approach
- 2. Progress and Outcomes
- 3.Impact

3. Impact

3. IMPACT - BETO BARRIERS & GOALS (1 of 3)

Project Outcomes and Relevance – Demonstrate a new pathway to BETO for biofuel production

- Biogas underused as a feedstock
- Intensified strategy overcomes economy of scale challenges (major C1 issue)
- Novel approach provides portfolio diversification and low-cost route
- Collaborate across industry, academia, and ChemCatBio to accelerate catalyst development for bioenergy applications

BETO MYP Barriers

Increasing the Yield from Catalytic Processes
Decreasing the Time and Cost to Develop Novel
Industrially Relevant Catalysts
Improving Catalyst Lifetime
Cost of Production

Relevant	Benchmark	Status	Long-Term
Criteria	(FY18 SOT)	(FY21 SOT)	Target
C2+ HC Yield (wt %) from biogas conversion (single-pass)	3%	16% (4% C5+)	>10%

BETO Performance Goals:

By 2030, verify hydrocarbon biofuel technologies that achieve ≥50% reduction in emissions relative to petroleumderived fuels at \$2.5/GGE MFSP

- Providing early-stage R&D to enable verification reduce risk
- Identifying viable routes to \$2.5/GGE

3. IMPACT - BIOENERGY INDUSTRY (2 OF 3)

Industrially-relevant for both established and emerging companies, municipalities, and publicprivate ventures in providing routes to renewably-sourced products to penetrate existing markets and develop new markets.

- Interest from both *upstream and downstream* companies (landfills and agriculture to consumers)
- Technology applies to a variety of processes and waste feedstocks
- Market demand from existing companies to use renewably-sourced precursors and to minimize off-gas waste streams
 - Create a cost-competitive technology with an emphasis on the small scale, with potential for circular economy
 - Focus on products with large markets, high value, and potential for bio-adoption
 - ~2000 landfills in US plus many more ag waste & wastewater treatment facilities
- Creates a <u>diversified revenue</u> stream for biogas producers

Downstream

Upstream

3. IMPACT — SCIENTIFIC ADVANCEMENT (3 OF 3)

Developing Foundational Science

Peer Reviewed Publications

External Presentations

Leverage unique DOE resources

Generating **Intellectual Property**

Issued Patents

Pending Patent Applications

Building Industrial Partnerships

®RENOVAREFUELS

Training and Support for Next-Generation **Engineers/Scientists**

Ph.D. students supported Post-doctoral researchers supported **Undergraduate internships Collaborations and networking with DOE NLs**

SUMMARY

Goal: Develop catalysts and process to convert biogas into value-added fuels and chemicals, adding a diversified revenue stream to enable economic biofuels

-Target: 10% yield to C2+ by 2022 on bench-scale

-Status: 16% yield to C2+ on lab-scale using real biogas

Approach:

- Integrated, collaborative approach to multicomponent catalyst design for biogas upgrading to achieve valueadded and diversified product distributions
- Develop catalytic materials by enhancing core function in spatially separated components

Technical accomplishments:

- Developed multicomponent catalysts with ~5x improvement in C2+ yield over SOT
- Demonstrated 70+ hours of stable catalyst performance

3) Relevance to Bioenergy Industry

- -Address critical challenges (adding value to biogas upgrading and improve yield of catalytic processes)
- -Focus on BETO barriers and performance targets
- -Renewable, cost-competitive products are of interest to industrial partners (upstream and downstream)

Future work:

- Conduct tests for 100 hr end-of-project goal
- Predict
- **Scale-up** catalyst and biogas flow for bench-scale demonstration using real biogas and link data to TEA/LCA

Biogas upgrading

Catalyst design to achieve high C2+ yields and \$\$\$

ACKNOWLEDGEMENTS

DOE BETO program
Trevor Smith, Nicole Fitzgerald, Seth
Menter, Bryce Finch, and the
verification teams

USF students and NREL staff

USF (internal SIP grant)

Industry/Municipality partners

DOE Bioenergy Technologies Office (BETO) 2023 Project Peer Review

Intensified Biogas Conversion to Value-added Fuels and Chemicals WBS: 2.3.1.414

Friday, April 7, 2023

Catalytic Upgrading Session

PI: John N. Kuhn (USF)

co-Pls: Babu Joseph (USF) and Matt Yung (NREL)

This presentation does not contain any proprietary, confidential, or otherwise restricted information

QUAD CHART REVIEW

Timeline

Project start date: 10/1/2018

Project end date: 9/30/2023

Budget

	FY22 Budgeted*	Total Award
DOE Funding	\$1,527,217	\$1,836,459
Project Cost Share	\$397,823	\$460,297

Partners/Collaborators

- Industry/Community Partners: T2C-Energy LLC, regional county landfills (Citrus, Manatee, Sarasota), Hinkley Center for Solid Waste Management
- NREL /BETO Projects: Advanced Catalyst Synthesis and Characterization (ACSC), Thermochemical Process Analysis

Project Goal

Develop a multi-functional catalyst to produce valueadded fuels and chemicals from biogas via an intensified pathway

End of Project Milestone (FY23)

Achieve 100 hr operation using commercial biogas and ≥25% reduction in MFSP, as compared to the benchmark SOT

Funding Mechanism

FOA: DE-FOA-0001916

Topic area: BioEnergy Engineering for Products

Synthesis (BEEPS)

Year: 2018

* Through end of FY22

2021 PEER REVIEW

3 key comments from previous peer review

Small scale per site: This work aims to build a streamlined process with lower than conventional CAP-EX and OP-EX to facilitate small scale operations.

Recycle to increase yields: We have incorporated recycling into simulations and TEA to enhance yields.

Bridging conditions between differing reactions: A single optimized pressure has been achieved

HIGHLIGHTS OF GO/NOGO POINTS

Intermediate Verification Passed, June 2021 (report filing date 9/30/21)

- **SOPO Budget Period 2 Go/No-Go Decision Point:** Through catalyst development and/or process optimization, demonstrate a liquid hydrocarbon (C5+) yield of 4 wt% and net product yield (C2+) of 10 wt% at 0.0012 kg surrogate biogas/hr over 10 hours of operation.
- USF demonstrated a 10-hour run of surrogate biogas converted to liquid hydrocarbon yield (C5+) of approximately 4.3 +- 0.1 wt% and net product yield (C2+) of 16.2 wt% at a feed rate of 0.0012 kg surrogate biogas/hour. The facility was able to collect and analyze fuels with carbon number up to approximately carbon number 7. When following the Anderson-Schulz-Flory distribution model to consider less volatile components that may have stuck to the reactor, and which could have been capture more easily in a larger reactor setup, USF believes the actual yield of C5+ was 11 wt%. To test for reproducibility, the Verification run was compared to two prior runs under similar conditions, and results were generally reproducible.
- The criteria of the BP2 Go/No-Go decision point were reasonably approached or met by the project team and the targeted values as (C5+) yield of 4 wt% and net product yield (C2+) of 10 wt% at 0.0012 kg surrogate biogas/hr over 10 hours of operation were achieved.

Duniant Information					
Project Information	University of South Florida				
Recipient: Project Title:	University of South Florida Intensified Biogas Conversion to Value-added Fuels and				
Project ritie.	Chemicals	y value added rucis	unu		
Key Individuals:		Kuhn (USF), Babu Joseph (USF), Matt Young (NREL), Brian			
Rey marviadais.	Gray (USF)				
Project Start:	10/1/2018				
Current Budget	BP2				
Period					
Project Cost	\$1,836,459				
(Federal):					
Project Cost (Cost	\$460,297				
Share):					
Technical Information					
Summary	· · · · · · · · · · · · · · · · · · ·				
	feasible pathway for producing				
	residual biomass resources such as forest residues, muni				
	and agricultural waste				
Project Highlights		ur run of surrog	U		
	converted to liquid hydrocarbon yield (C5+) of approximately				
		d net product yield (C2+) of 16.2 wt% at a			
	feed rate of 0.0012 kg surrogate biogas/hour. The facility wa able to collect and analyze fuels with carbon number up to				
	approximately carbon number 7. When following the				
	Anderson-Schulz-Flory distribution model to consider less				
	volatile components that may have stuck to the reactor, and				
	which could have been capture more easily in a larger reactor				
	setup, USF believes the actual yield of C5+ was 11 wt%. To test				
	for reproducibility, the Verification run was compared to two				
	prior runs under similar conditions, and results were generally				
	reproducible.				
Portfolio Information					
Award Number	EE0008488				
WBS	2.3.1.414				
TRL	3				
Program Area	Conversion				
Key Performance Para	Intermediate Verifications	Intermediate	Final		
	Results				
CE L Viold	4.3 +- 0.1 wt%	Targets 4% wt	Targets 4% wt		
C5+ Yield C2+ Yield (Net	4.3 +- 0.1 Wt% 16.2 wt%	4% wt	4% Wt 10% wt		
Product)	10.2 WL%	10% WL	10% Wt		

SCIENTIFIC OUTPUT

Publications

Zhao, X., Joseph, B., Kuhn, J.N., and Ozcan, S., "Biogas reforming to syngas: a review" *iScience* 23 (2020) 101082. (DOI: 10.1016/j.isci.2020.101082)

Sokefun, Y.O., Joseph, B., and Kuhn, J.N., "Impact of Ni and Mg loadings on dry reforming performance of Pt/ceria-zirconia catalysts" *Industrial* & *Engineering Chemistry Research* 58 (2019) 9322-9330. (DOI: 10.1021/acs.iecr.9b01170)

He, Y., Shi, H., Johnson, O., Joseph, B., and Kuhn, J.N., "Selective and Stable In-promoted Fe Catalyst for Syngas Conversion to Light Olefins", *ACS Catalysis* 11 (2021) 15177-15186. (DOI: 10.1021/acscatal.1c04334)

Gray, B., Joseph, B., and Kuhn, J.N., "Enhancing Reactant Selectivity for Ni/Mg Reforming Catalysts Using Silicalite-1 Shells: A Modeling Study" *Chemical Engineering Journal* 437 (2022) 135353. (DOI: https://doi.org/10.1016/j.cej.2022.135353).

Sokefun, Y.O., Trottier, J., Yung, M., Joseph, B., and Kuhn, J.N., "Low temperature dry reforming of methane using Ru-Ni-Mg/Ceria-zirconia catalysts: Effect of Ru loading and reduction temperature" *Applied Catalysis A: General* 645 (2022) 118842. (https://doi.org/10.1016/j.apcata.2022.118842).

"Feasibility of intensified conversion of biogas to value added hydrocarbons" and several others in preparation.

Patents, Presentations, and Commercialization

Hinkley Center Solid Waste Research Colloquium Webinar Series

(https://swanafl.org/events/hinkley-center-solid-waste-research-colloquium-webinar-series/)

Frequent conference presentations

/contributions AICHE, ACS, ICC, NASCRE, NACS/NAM, NOBCChE, etc

Department Seminars Various institutions Local presentations Also quest class lectures

IΡ

U.S. patent number 9,328,035 Record of Invention: ROI 20-141 at NREL

BFD of Intensified **BTL** Process

